Lisa Morgan's Official Site

Strategic Insights and Clickworthy Content Development

Category: AI

Machine Learning’s Greatest Weakness Is Humans

Machine learning– deep learning and cognitive computing in particular– attempt to model the human brain. That seems logical because the most effective way to establish bilateral understanding with humans is to mimic them. As we have observed from everyday experiences, machine intelligence isn’t perfect and neither is human intelligence.

Still, understanding human behavior and emotion is critical if machines are going to mimic humans well. Technologists know this, so they’re working hard to improve natural language processing, computer vision, speech recognition, and other things that will enable machines to better understand humans behave more like humans

I imagine that machines will never emulate humans perfectly because they will be able to rapidly identify the flaws in our thinking and behavior and improve upon them. To behave exactly like us would

From an analytical perspective, I find all of this fascinating because human behavior is linear and non-linear, rational and irrational, logical and illogical. If you study us at various levels of aggregation, it’s possible to see patterns in the way humans behave as a species, why we fall into certain groups and why behave the way we do as individuals. I think it would be very interesting to compare what machines have to say about all of that with what psychologists, sociologists, and anthropologists have to say.

Right now we’re at the point where we believe that machines need to understand human intelligence. Conversely, humans need to understand machine intelligence.

Why AI is Flawed

Human brain function is not infallible. Our flaws present challenges for machine learning, namely, machines have the capacity to make the same mistakes we do and exhibit the same biases we do, only faster. Microsoft’s infamous twitter bot is a good example of that.

Then, when you model artificial emotional intelligence based on human emotion, the results can be entertaining, inciting or even dangerous.

Training machines, whether for supervised or unsupervised learning, begins with human input at least for now. In the future, the necessity for that will diminish because a lot of people will be teaching machines the same things. The redundancy will indicate patterns that are easily recognizable, repeatable and reusable. Open source machine learning libraries are already available, but there will be many more that approximate some aspect of human brain function, cognition, decision-making, reasoning, sensing and much more.

Slowly but surely, we’re creating machines in our own image.

Why Automation and AI are Cool, Until They’re Not

Every day, there’s more news about automation, machine learning and AI. Already, some vendors are touting their ability to replace salespeople and even data scientists. Interestingly, the very people promoting these technologies aren’t necessarily considering the impact on their own jobs.

In the past, knowledge jobs were exempt from automation, but with the rise of machine learning and AI, that’s no longer true. In the near future, machines will be able to do even more tasks that have historically been done by humans.

Somewhere between doomsday predictions and automated utopia is a very real world of people, businesses and entire industries that need to adapt or risk obsolescence.

History isn’t simply repeating itself

One difference between yesterday’s automation and today’s automation (besides the level of machine intelligence) is the pace of change. Automating manufacturing was a very slow process because it required major capital investments and significant amounts of time to implement. In today’s software-driven world, change occurs very quickly and the pace of change is accelerating.

The burning existential question is whether organizations and their employees can adapt to change fast enough this time. Will autonomous “things” and bots cause the staggering unemployment levels some foresee a decade from now, or will the number of new jobs compensate for the decline of traditional jobs?

“I think there will be stages where we have the 10 percent digital workforce in the next two years and 20 percent in three to four years,” said Martin Fiore, Americas tax talent leader at professional services firm EY. “Some will say, ‘Wow, that’s scary.’ Others will say, ‘I see the light I’m going to upscale my capabilities.”

Businesses and individuals each need to change the way they think.

Angela Zutavern, VP at management consulting firm Booz Allen Hamilton and co-author of the forthcoming book, The Mathematical Corporation views intelligent automation as a new form of leadership and strategy as opposed to just technology.

“Companies who understand this and get on board with it will be way ahead and I believe that companies who either ignore it or don’t believe it’s real may go out of business,” she said. “I think it’s better to know about it, understand it, and be a part of making the change happen rather than getting caught off-guard and have it happen to you.”

An old company pioneers new tricks

Despite its 100-year history, EY is actively facilitating the adoption of Robotics Process Automation (RPA) and AI within its own four walls and among its customers.

Its RPA group employs a global team of 1,000 robotic engineers and analysts who are creating new applications. In past 18 months, more than 200 bots have been rolled out in tax operations, which includes work for clients. EY is also using RPA processes internally in core business functions to improve quality and performance while enabling a new sense of purpose among its employees.

“RPA helps us increase our ability to handle high levels of transaction volume (e.g.,tax returns), accelerate on-time delivery and improve accuracy,” said Fiore. “Over time, there will be a positive impact on our workforce model, and we’re planning for that now.”

Similarly, an EY innovation lab recently experimented to see if AI could help to analyze contracts faster and better than people.

“We thought we’d make headway and great progress in a year or two, but in the first 90 days [the machines were] three times more effective in the process,” said Jeff Wong, global chief innovation officer at EY. “You’ll see us increasing our efforts there radically in the next 12 to 18 months.”

Last year, EY “hired” 350 bots, although company spends about a half a billion dollars annually on employee training. Job rotation is also common at EY because the company wants to “teach people to learn how to learn.”

Education will change

Young people entering the workforce already need different skills than their predecessors, and the trend will continue. Param Singh, associate professor of business technologies at Carnegie Mellon University expects grade schools to teach fundamental programming skills and high schools to teach machine learning.

“Typically, managers [had] person management jobs. Increasingly those jobs will have to be good on the technology side,” said Singh. “Few people are good at deep learning, probably less than 5,000. We’ll needs hundreds of thousands when we see major adoption happening.”

Meanwhile, working professionals and their employers should not be complacent. As the levels of intelligent automation increase, individuals and companies will need to understand which jobs will be displaced and which jobs will be created, none of which is static.

“Cloud computers, data lakes and in the future, quantum computing are things that every leader should be conversant about or anyone who aspires to a leadership role in this machine learning age,” said Booz Allen Hamilton’s Zutavern. “People should understand what the possibilities are and know when to pull in the deep experts.”

3 Cool AI Projects

AI is all around us, quietly working in the background or interacting with us via a number of different devices. Various industries are using AI for specific reasons such as ensuring that flights arrive on time or irrigating fields better and more economically.

Over time, our interactions with AI are becoming more sophisticated. In fact, in the not-too-distant future we’ll have personal digital assistants that know more about us than we know about ourselves.

For now, there are countless AI projects popping up in commercial, industrial and academic settings. Following are a few examples of projects with an extra cool factor.

Get Credit. Now.

Who among us hasn’t sat in a car dealership, waiting for the finance person to run a credit check and provide us with financing options? We’ve also stood in lines at stores, filling out credit applications, much to the dismay of those standing behind us in line. Experian DataLabs is working to change all that.

Experian created Experian DataLabs to experiment with the help of clients and partners. Located in San Diego, London, and Sao Paulo, Experian DataLabs employ scientists and software engineers, 70% of whom are Ph.Ds. Most of these professionals have backgrounds in machine learning.

“We’re going into the mobile market where we’re pulling together data, mobile, and some analytics work,” said Eric Haller, EVP of Experian’s Global DataLabs. “It’s cutting-edge machine learning which will allow for instant credit on your phone instead of applying for credit at the cash register.”

That goes for getting credit at car dealerships, too. Simply text a code to the car manufacturer and get the credit you need using your smartphone. Experian DataLabs is also combining the idea with Google Home, so you can shop for a car, and when you find one you like, you can ask Google Home for instant credit.

There’s no commercial product available yet, but a pilot will begin this summer.

AI About AI

Vicarious is attempting achieve human-level intelligence in vision, language, and motor control. It is taking advantage of neuroscience to reduce the amount of input machine learning requires to achieve a desired result. At the moment, Vicarious is focusing on mainstream deep learning and computer vision.

It’s concept is compelling to many investors. So far, the company has received $70 million from corporations, venture capitalists and affluent private investors including Ashton Kutcher, Jeff Bezos, and Elon Musk.

On its website, Vicarious wisely points out the downsides of model optimization ad infinitum that results in only incremental improvements. So, instead of trying to beat a state-of-the-art algorithm, Vicarious is to trying to identify and characterize the source of errors.

Draft Better Basketball Players

The Toronto Raptors is working with IBM Watson to identify what skills the team needs and which prospective players can best fill the gap. It is also pre-screening each potential recruits’ personality traits and character.

During the recruiting process, Watson helps select the best players and it also suggests ideal trade scenarios. While prospecting, scouts enter data into a platform to record their observations. The information is later used by Watson to evaluate players.

And, a Lesson in All of This

Vicarious is using unsupervised machine learning. The Toronto Raptors are using supervised learning, but perhaps not exclusively. If you don’t know the difference between the two yet, it’s important to know. Unsupervised learning looks for patterns. Supervised learning is presented with classifications such as these are the characteristics of “good” traits and these are the characteristics of “bad” traits.

Supervised and unsupervised learning are not mutually exclusive since unsupervised learning needs to start somewhere. However, supervised learning is more comfortable to humans with egos and biases because we are used to giving machines a set of rules (programming). It takes a strong ego, curiosity or both to accept that some of the most intriguing findings can come from unsupervised learning because it is not constrained by human biases. For example, we may define the world in terms of red, yellow and blue. Unsupervised learning could point out crimson, vermillion, banana, canary, cobalt, lapis and more.